Investigation of in vitro biodegradation and biocompatibility of hydroxyapatite coated Mg for biodegradable implant applications

  • Lê Hanh Bệnh viện Trung ương Quân đội 108
  • Lê Văn Hải Bệnh viện Quân y 103
  • Nguyễn Thế Hoàng Bệnh viện Trung ương Quân đội 108
  • Lê Minh Hải Trường Đại học Bách khoa Hà Nội
  • Lê Thị Trang Học viện Công nghệ Tokyo, Nhật Bản
  • Lê Văn Quân Bệnh viện Quân y 103
  • Nguyễn Việt Nam Bệnh viện Trung ương Quân đội 108

Main Article Content

Keywords

Biodegradable magnesium implants, hydroxyapatite, biodegradation, biocompatibility

Abstract

Objective: To evaluate of the biodegradation rate and biocompatibility of HAp coated Mg for biodegradable implant applications. Subject and method: Biodegradable HAp coated Mg will be used for cell culture tests in MEM-a medium. The biodegradation rate was evaluated via the amount of hydrogen gas released and the morphology of the samples. The in vitro biocompatibility of the material was evaluated via proliferation of the cell and cell morphology. Result: The cell culture test using MC3T3-E1 cell line demonstrated that HAp improved both biocorrosion resistance and biocompatibility of the implant materials. Conclusion: The HAp coated Mg has moderate biodegradation rate and good biocompatibility and is suitable for implant applications.

Article Details

References

1. Hing KA (2004) Bone repair in the twenty-first century: Biology, chemistry or engineering?. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 362(1825): 2821-2850.
2. Wu S, Liu X, Yeung KWK, Liu C, and Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R Reports 80(1): 1-36.
3. Larry HL and Julia MP (2002) Third-generation biomedical materials. Science 80(295): 1014-1017.
4. Mordike BL and Ebert T (2001) Magnesium Properties - applications - potential. Materials Science and Engineering A 302(1):37-45.
5. Sumner DR (2015) Long-term implant fixation and stress-shielding in total hip replacement. J. Biomech 48(5): 797-800.
6. Witte F (2010) The history of biodegradable magnesium implants: A review. Acta Biomater 6(5): 1680-1692.
7. Atrens A, Liu M, and Zainal Abidin NI (2011) Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol 176(20): 1609-1636.
8. Noviana D, Paramitha D, Ulum MF, and H Hermawan (2016) The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. J. Orthop. Transl 5: 9-15.
9. Li X, Liu X, Wu S, Yeung KWK, Zheng Y, and Chu PK (2016) Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomater 45: 2-30.
10. Kim YK et al (2018) Gas formation and biological effects of biodegradable magnesium in a preclinical and clinical observation. Sci. Technol. Adv. Mater 19(1): 324–335.