Designing in silico primers and probes for the real-time PCR detection and serotype identification of dengue virus in Vietnam
Main Article Content
Keywords
Abstract
Objective: To design in silico primer and probe sets for the development of a multiplex real-time PCR diagnostic and serotyping kit for the dengue virus, utilizing mostly genomic data isolated from Vietnamese patients. Subject and method: A total of 1,718 complete genome sequences of dengue virus strains from the database (covering the years 2001 to 2022) were used, including 639 (37.2%) complete genome sequences of dengue virus strains collected in Vietnam. Using bioinformatics tools, we designed in silico primers and probes sets for multiplex real-time PCR diagnosis and serotyping of the dengue virus in Vietnam. Result and conclusion: The results obtained include four pairs of primers and probes, with target gene sizes of 106bp, 98bp, 156bp, and 103bp, which are specific to dengue virus serotypes 1, 2, 3, and 4, respectively.
Article Details
References
2. Hung TM, Clapham HE, Bettis AA et al (2018) The estimates of the health and economic burden of dengue in Vietnam. Trends Parasitol 34(10): 904-918. doi:10.1016/j.pt.2018.07.007.
3. Phadungsombat J, Vu HTT, Nguyen QT et al (2023) Molecular characterization of dengue virus strains from the 2019-2020 epidemic in Hanoi, Vietnam. Microorganisms. 11(5). doi:10.3390/microo rganisms11051267.
4. Dwivedi VD, Tripathi IP, Tripathi RC, Bharadwaj S, Mishra SK (2017) Genomics, proteomics and evolution of dengue virus. Brief Funct Genomics 16(4): 217-227.
5. Costa VG da, Marques-Silva AC, Moreli ML (2014) A meta-analysis of the diagnostic accuracy of two commercial NS1 antigen ELISA tests for early dengue virus detection. PLoS One 9(4): 94655.
6. Centre for Disease Control and Prevention (2013) CDC DENV-1-4 real-time RT-PCR assay for detection and serotype identification of dengue virus the CDC real time RT-PCR assay for dengue diagnosis. CDC. Published online:1-5.
7. Guo C, Zhou Z, Wen Z et al (2017) Global epidemiology of dengue outbreaks in 1990-2015: A systematic review and meta-analysis. Front Cell Infect Microbiol 7: 317.
8. Aguas R, Dorigatti I, Coudeville L, Luxemburger C, Ferguson NM (2019) Cross-serotype interactions and disease outcome prediction of dengue infections in Vietnam. Sci Rep 9(1): 1-12.
9. Hatcher EL, Zhdanov SA, Bao Y et al (2017) Virus Variation Resource - improved response to emergent viral outbreaks. Nucleic Acids Res 45(D1): 482-490. doi:10.1093/nar/gkw1065.
10. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14): 3059-3066.
11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol. 215(3): 403-410. doi:10.1016/S0022-2836(05)80360-2.
12. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2 a multiple sequence alignment editor and analysis workbench. Bioinformatics. 25(9): 1189-1191. doi:10.1093/bioinformatics/btp033.
13. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10): 1289-1291. doi:10.1093/bioinformatics/btm091.
14. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134. doi: 10.1186/1471-2105-13-134.
15. Owczarzy R, Tataurov A V, Wu Y et al (2008) IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res 36(Web Server issue):W163-169. doi:10.1093/nar/gkn198.