Characterization of white matter tracts by diffusion tensor imaging in normal human brain

  • Vũ Đình Triển Bệnh viện Trung ương Quân đội 108
  • Lâm Khánh Bệnh viện Trung ương Quân đội 108

Main Article Content

Keywords

DTI, magnetic resonance, normal white matter tracts

Abstract

Objective: To investigate the characteristics of white matter bundles in normal subjects using 3.0 Tesla magnetic resonance diffusion tensor imaging (DTI). Subject and method: A cross-sectional descriptive study on 30 normal subjects from January 2021 to June 2021 with the aim of characterizing white matter bundles by determining features including number of fibers, fiber length, voxel index, FA, ADC index; performing symmetric comparisons between the two hemispheres and genders comparison. Result: The number of fibers, fiber length and voxel index of the subjects varied largely between different tracts, while the range of values ​​of FA and ADC indexes were more concentrated, but there was still a diversity of figures between different regions and tracts. Moreover, some statistically significant differences between bundles when comparing and comparing by symmetry and genders. Conclusion: This study initially provided the referential parameters for characterizing conduction tracts connecting different brain centers of normal human brain on DTI, which is the basis for further research on brain activities as well as constructing referential thresholds in diagnosis and treatment of neurological diseases.

Article Details

References

1. Passingham RE, Stephan KE et al (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8): 606-616.
2. Van Essen DC, Newsome WT, Maunsell JH, Bixby JL (1986) The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections. J Comp Neurol 244(4): 451-480. doi: 10.1002/cne.902440405.
3. Bergamino M, Walsh RR, Stokes AM (2021) Free-water diffusion tensor imaging improves the accuracy and sensitivity of white matter analysis in Alzheimer’s disease. Sci Rep 11(1): 6990. doi: 10.1038/s41598-021-86505-7.
4. Lâm Khánh (2022) Ứng dụng cộng hưởng từ sức căng khuếch tán (DTI) trong nghiên cứu đường dẫn truyền thần kinh giữa các trung khu của não bộ để góp phần chẩn đoán một số bệnh lý thần kinh. Đề tài nghiên cứu cấp Bộ Quốc phòng.
5. Thomas B, Eyssen M, Peeters R, Molenaers G, Van Hecke P, De Cock P, Sunaert S (2005) Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain 128(Pt 11):2562-2577. doi: 10.1093/brain/awh600.
6. Kuchtova B, Wurst Z, Mrzilkova J, Ibrahim I, Tintera J, Bartos A, Musil V, Kieslich K, Zach P (2018) Compensatory shift of subcallosal area and paraterminal gyrus white matter parameters on DTI in patients with Alzheimer disease. Curr Alzheimer Res 15(6): 590-599.
7. Nguyễn Đăng Hải, Nguyễn Duy Bắc và cộng sự (2022) Kết quả bước đầu ứng dụng cộng hưởng từ sức căng khuếch tán 3 Tesla đánh giá đặc điểm bó thể chai trên bệnh nhân Alzheimer người Việt Nam. Tạp chí Y học Việt Nam, 519, tr. 261-266.
8. Elshafey R, Hassanien O et al (2014) Diffusion tensor imaging for characterizing white matter changes in multiple sclerosis. The Egyptian Journal of Radiology and Nuclear Medicine 45(3): 881-888.
9. Harrison DM, Caffo BS, Shiee N, Farrell JA, Bazin PL, Farrell SK, Ratchford JN, Calabresi PA, Reich DS (2011) Longitudinal changes in diffusion tensor–based quantitative MRI in multiple sclerosis. Neurology 76(2): 179-186. doi: 10.1212/WNL. 0b013e318206ca61.
10. Bagi Z, Kroenke CD, Fopiano KA, Tian Y, Filosa JA, Sherman LS, Larson EB, Keene CD, Degener O'Brien K, Adeniyi PA, Back SA (2022) Association of cerebral microvascular dysfunction and white matter injury in Alzheimer’s disease. Geroscience 44(4):1-14. doi: 10.1007/s11357-022-00585-5.
11. Brander A, Kataja A, Saastamoinen A, Ryymin P, Huhtala H, Ohman J, Soimakallio S, Dastidar P (2010) Diffusion tensor imaging of the brain in a healthy adult population: Normative values and measurement reproducibility at 3 T and 1.5 T. Acta Radiol 51(7): 800-807.
12. Lee CE, Danielian LE et al (2009) Normal regional fractional anisotropy and apparent diffusion coefficient of the brain measured on a 3 T MR scanner. Neuroradiology 51(1): 3-9.
13. Zhang F, Daducci A, He Y, Schiavi S, Seguin C, Smith RE, Yeh CH, Zhao T, O'Donnell LJ (2022) Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: A review. NeuroImage 249: 118870.
14. Nguyễn Văn Điều, Nguyễn Duy Bắc và cộng sự (2019) Nghiên cứu kích thước bó vỏ - tủy trên người Việt bằng cộng hưởng từ sức căng khuếch tán 3 Tesla. Tạp chí Y học Việt Nam, 483, tr. 66-72.
15. Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: An MRI‐volumetric study. Am J Phys Anthropol 118(4): 341-358. doi: 10.1002/ajpa.10092.
16. Cosgrove KP, Mazure CM, Staley JK (2007) Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry 62(8): 847-855. doi: 10.1016/j.biopsych.2007.03.001.
17. Takao H, Abe O, Yamasue H, Aoki S, Sasaki H, Kasai K, Yoshioka N, Ohtomo K (2011) Gray and white matter asymmetries in healthy individuals aged 21-29 years: A voxel‐based morphometry and diffusion tensor imaging study. Hum Brain Mapp 32(10): 1762-1773. doi: 10.1002/hbm.21145.
18. Menzler K, Belke M et al (2011) Men and women are different: Diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. Neuroimage 54(4): 2557-2562.
19. Inano S, Takao H et al (2011) Effects of age and gender on white matter integrity. AJNR Am J Neuroradiol 32(11): 2103-2109.
20. Hsu JL, Leemans A, Bai CH, Lee CH, Tsai YF, Chiu HC, Chen WH (2008) Gender differences and age-related white matter changes of the human brain: A diffusion tensor imaging study. NeuroImage 39: 566-577.