Một số peptide đánh dấu phóng xạ sử dụng ghi hình PET/CT u thần kinh nội tiết và ung thư tuyến tiền liệt

  • Nguyễn Quốc Thắng Bệnh viện ĐKQT Vinmec Times city
  • Phạm Đăng Tùng Bệnh viện ĐKQT Vinmec Times city
  • Mai Hồng Sơn Bệnh viện Trung ương Quân đội 108
  • Nguyễn Thị Kim Dung Bệnh viện Trung ương Quân đội 108

Main Article Content

Keywords

Peptide đánh dấu phóng xạ, 18F-FDG, kỹ thuật PET

Tóm tắt

Hiện nay, các thuốc có cấu trúc peptide đang ngày càng được phát triển mạnh và mang lại hiệu quả rõ rệt bên cạnh các hợp chất phân tử nhỏ, trong Y học hạt nhân các peptide đánh dấu đồng vị phóng xạ sử dụng trong chẩn đoán và điều trị cũng đã được nghiên cứu và ứng dụng từ nhiều năm nay. Cùng với sự phát triển của kỹ thuật PET (positron emission tomography) và sự ra đời của các đồng vị phát tia positron, các peptide đánh dấu phóng xạ trong ghi hình PET đã có những bước tiến đáng kể với một số dược chất phóng xạ đã được FDA (U.S. Food and Drug Administration) phê duyệt như DOTATATE (DOTA-Octreotate) hay PSMA (prostate-specific-membrane antigen) đánh đấu với đồng vị gallium-68 trên các khối u thần kinh nội tiết và ung thư tuyến tiền liệt, hay gần đây nhất là các peptid FAPI hứa hẹn khả năng phát hiện các khối u không hề thua kém so với 18F-FDG. Trong bài tổng quan này, chúng tôi xin trình bày khái quát về các peptide đánh dấu phóng xạ này trong ghi hình PET hiện nay.

Article Details

Các tài liệu tham khảo

1. Dotatate P (2016) FDA approves 18F-fluciclovine and 68Ga-DOTATATE products. J. Nucl. Med 57: 9.
2. AL-Nahhas A, Fanti S (2012) Radiolabelled peptides in diagnosis and therapy: An introduction. European journal of nuclear medicine and molecular imaging 39: 1-3.
3. Laverman P, Sosabowski JK, Boerman OC, Oyen WJ (2012) Radiolabelled peptides for oncological diagnosis. European journal of nuclear medicine and molecular imaging 39: 78-92.
4. Fani M, Maecke HR, Okarvi SM (2012) Radiolabeled peptides: Valuable tools for the detection and treatment of cancer. Theranostics. 2(5): 481.
5. Al-Nahhas A, Win Z, Szyszko T, Singh A, Nanni C, Fanti S, Rubello D (2007) Gallium-68 PET: A new frontier in receptor cancer imaging. Anticancer research 27(6B): 4087-4094.
6. Patel YC, Greenwood MT, Panetta R, Demchyshyn L, Niznik H, Srikant CB (1995) The somatostatin receptor family. Life sciences 57 (13): 1249-1265.
7. Reubi JC, Laissue J, Krenning E, Lamberts SW (1992) Somatostatin receptors in human cancer: Incidence, characteristics, functional correlates and clinical implications. The Journal of steroid biochemistry and molecular biology 43(1-3): 27-35.
8. van der Lely AJ, de Herder WW, Krenning EP, Kwekkeboom DJ (2003) Octreoscan radioreceptor imaging. Endocrine 20: 307-311.
9. Hofmann M, Maecke H, Börner R, Weckesser E, Schöffski P, Oei L, Schumacher J, Henze M, Heppeler A, Meyer J, Knapp H (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68 Ga-DOTATOC: Preliminary data. European journal of nuclear medicine 28: 1751-1757.
10. Graham MM, Gu X, Ginader T, Breheny P, Sunderland JJ (2017) 68Ga-DOTATOC imaging of neuroendocrine tumors: A systematic review and metaanalysis. Journal of Nuclear Medicine 58(9): 1452-1458.
11. Reubi JC, Waser B, Schaer JC, Laissue JA (2001) Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. European journal of nuclear medicine 28: 836-846.
12. Schwarz SW (2017) SNMMI Leadership Update: FDA approval of imaging agents: An exciting investment in nuclear medicine. Soc Nuclear Med.
13. Hennrich U, Kopka K (2019) Lutathera®: The first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals 12(3): 114.
14. Johnbeck CB, Knigge U, Loft A, Berthelsen AK, Mortensen J, Oturai P, Langer SW, Elema DR, Kjaer A (2017) Head-to-Head Comparison of (64)Cu-DOTATATE and (68)Ga-DOTATOC PET/CT: A Prospective Study of 59 Patients with Neuroendocrine Tumors. J Nucl Med 58(3): 451-457.
15. Pfeifer A, Knigge U, Mortensen J, Oturai P, Berthelsen AK, Loft A, Binderup T, Rasmussen P, Elema D, Klausen TL, Holm S, von Benzon E, Højgaard L, Kjaer A (2012) Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. Journal of Nuclear Medicine 53 (8): 1207-1215.
16. Pfeifer A, Knigge U, Binderup T, Mortensen J, Oturai P, Loft A, Berthelsen AK, Langer SW, Rasmussen P, Elema D, von Benzon E, Højgaard L, Kjaer A (2015) 64Cu-DOTATATE PET for neuroendocrine tumors: A prospective head-to-head comparison with 111In-DTPA-octreotide in 112 patients. Journal of Nuclear Medicine 56(6): 847-854.
17. Wild D, Bomanji JB, Benkert P, Maecke H, Ell PJ, Reubi JC, Caplin ME (2013) Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. Journal of Nuclear Medicine 54(3): 364-372.
18. Conti M, Eriksson L (2016) Physics of pure and non-pure positron emitters for PET: A review and a discussion. EJNMMI physics 3: 1-17.
19. Wester H et al (2003) PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18 F-labelled, carbohydrated analogue of octreotide. European journal of nuclear medicine and molecular imaging 30: 117-122.
20. Lewis JS et al (2019) The Radiopharmaceutical Chemistry of Fluorine-18: Nucleophilic Fluorinations. Nuklearchemie.
21. Ilhan H, Todica A, Lindner S, Boening G, Gosewisch A, Wängler C, Wängler B, Schirrmacher R, Bartenstein P (2019) First-in-human 18 F-SiFA lin-TATE PET/CT for NET imaging and theranostics. European journal of nuclear medicine and molecular imaging 46: 2400-2401.
22. Laverman P, D'Souza CA, Eek A, McBride WJ, Sharkey RM, Oyen WJ, Goldenberg DM, Boerman OC (2012) Optimized labeling of NOTA-conjugated octreotide with F-18. Tumor Biology 33: 427-434.
23. Long T, Yang N, Zhou M, Chen D, Li Y, Li J, Tang Y, Liu Z, Li Z, Hu S (2019) Clinical application of 18F-AlF-NOTA-octreotide PET/CT in combination with 18F-FDG PET/CT for imaging neuroendocrine neoplasms. Clinical nuclear medicine 44(6): 452-458.
24. Tshibangu T, Cawthorne C, Serdons K, Pauwels E, Gsell W, Bormans G, Deroose CM, Cleeren F (2020) Automated GMP compliant production of [18F] AlF-NOTA-octreotide. EJNMMI Radiopharm Chem 5(1):4. doi: 10.1186/s41181-019-0084-1.
25 Tino WT et al (2000) Isolation and characterization of monoclonal antibodies specific for protein conformational epitopes present in prostate-specific membrane antigen (PSMA). Hybridoma 19(3): 249-257.
26. Silver DA et al (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clinical cancer research: an official journal of the American Association for Cancer Research 3(1): 81-85.
27. Birtle AJ et al (2005) Tumour markers for managing men who present with metastatic prostate cancer and serum prostate‐specific antigen levels of < 10ng/mL. BJU international 96(3): 303-307.
28. Perner S et al (2007) Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Human pathology 38 (5): 696-701.
29. Mannweiler S et al (2009) Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathology & Oncology Research 15: 167-172.
30. Kozikowski AP et al (2001) Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). Journal of medicinal chemistry 44(3): 298-301.
31. Tsukamoto T et al (2007) Progress in the discovery and development of glutamate carboxypeptidase II inhibitors. Drug discovery today 12(17-18): 767-776.
32. Pomper MG et al (2002) 11C-MCG: Synthesis, uptake selectivity, and primate PET of a probe for glutamate carboxypeptidase II (NAALADase). Molecular imaging 1(2): 15353500200202109.
33. Foss CA et al (2005) Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clinical cancer research 11(11): 4022-4028.
34. Eder M et al (2012) 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjugate chemistry 23(4): 688-697.
35. Afshar-Oromieh A et al (2016) The rise of PSMA ligands for diagnosis and therapy of prostate cancer. Journal of Nuclear Medicine 57 (3): 79-89.
36. Kularatne SA et al (2009) Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand. Molecular pharmaceutics 6(3): 780-789.
37. Evangelista L et al (2013) Choline PET or PET/CT and biochemical relapse of prostate cancer: A systematic review and meta-analysis. Clinical nuclear medicine 38(5): 305-314.
38. Hennrich U et al (2021) [68Ga] Ga-PSMA-11: The first FDA-approved 68Ga-radiopharmaceutical for PET imaging of prostate cancer. Pharmaceuticals 14 (8): 713.
39. Champion C et al (2007) Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET. Physics in Medicine & Biology 52(22): 6605.
40. Sartor O et al (2021) Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. New England Journal of Medicine 385(12): 1091-1103.
41. Rowe SP et al (2015) 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. Journal of Nuclear Medicine 56(7): 1003-1010.
42. Chen Y et al (2011) 2-(3-{1-Carboxy-5-[(6-[18F] fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid,[18F] DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clinical cancer research 17(24): 7645-7653.
43. Pienta KJ et al (2021) A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with 18F-DCFPyL in prostate cancer patients (OSPREY). The Journal of urology 206(1): 52-61.
44. Morris MJ et al (2020) Impact of PSMA-targeted imaging with 18F-DCFPyL-PET/CT on clinical management of patients (pts) with biochemically recurrent (BCR) prostate cancer (PCa): Results from a phase III, prospective, multicenter study (CONDOR). American Society of Clinical Oncology.
45. Giesel FL et al (2016) 18 F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. European journal of nuclear medicine and molecular imaging 43: 1929-1930.
46. Olivier P et al (2023) Phase III Study of 18F-PSMA-1007 Versus 18F-Fluorocholine PET/CT for Localization of Prostate Cancer Biochemical Recurrence: A Prospective, Randomized, Crossover Multicenter Study. Journal of Nuclear Medicine 64 (4): 579-585.
47. Fendler WP et al (2023) PSMA PET/CT: joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. European journal of nuclear medicine and molecular imaging 50(5): 1466-1486.
48. Jackson IM et al (2017) Clinical applications of radiolabeled peptides for PET. Seminars in Nuclear Medicine, Elsevier: 493-523.
49. Willowson KP (2019) Production of radionuclides for clinical nuclear medicine. European Journal of Physics 40(4): 043001.
50. Beyer T, Czernin J, Freudenberg L, Giesel F, Hacker M, Hicks RJ, Krause BJ (2023) A 2022 International survey on the status of prostate cancer theranostics. Journal of Nuclear Medicine 64(1): 47-53.